
TouchGFX
Embedded Graphics 
- Basic Concepts

The presentation is aiming at some of the basic key concepts that is important to 
know when developing an embedded UI, with focus on TouchGFX.
Starting out by introducing some general topics, before talking more about more 
TouchGFX orientated subjects.

The main chapter covered are
Basic Concepts (https://support.touchgfx.com/docs/basic-concepts/embedded-
graphics)

This presentation wil cover some background knowledge for embedded UI 
development, and there won’t look at how to use TouchGFX.

Presentations for getting started with UI development and TouchGFX can either be 
the presentation:
UI Development - Fundamentals 
(https://support.touchgfx.com/docs/resources/presentations#ui-development---
fundamentals)
Or the workshop for a step-by-step guide
UI Development - Getting Started 
(https://support.touchgfx.com/docs/resources/presentations#ui-development---

1



getting-started)

This presentation takes approximately ~ 1 hour 

1



Agenda

1 Introduction

2 Hardware

3 Color Formats

4 Framebuffer

5 Graphics Engine

6 Main Loop

7 Main Loop & Framebuffer

8 Performance

2

9 Operating Systems

The agende for the presentation is a short introduction.

2



Introduction

3



Goal of this presentation
• General knowledge about embedded graphics

• Basic hardware

• Color formats

• Framebuffer

• Basic knowledge about the TouchGFX Engine

• The Graphics Engine

• The Main Loop

• Performance

• Operating System

Introduction

4

4



Further reading

• You will find a lot of help afterwards in the TouchGFX documentation site: 
https://support.touchgfx.com/

• Slides in this presentation will refer to relevant documentation pages. Links will be 
in the lower right-hand corner of the slides

• The presentation is based on the TouchGFX documentation: 
https://support.touchgfx.com/docs/basic-concepts/embedded-graphics

Introduction

5

5



TouchGFX Development

• Main Components:

• Main Activities

• In this presentation, we will not focus on a specific component or activity as it is an 
introduction to the basic elements. We will instead focus on important know-how 
elements when working with components and activities related to TouchGFX
Development

Introduction

6Documentation Link: Development Introduction

Ref technical introduction

6



• What is Embedded Graphics?
• What it can be

• All embedded devices with a graphical display

• Modern smartphone, with high resolution and 3D animations

• Old 8 bit MCU and a character og segment displays

• What it is not

• A personal computer and tablets

• What it is to TouchGFX

• UIs on STM32 microcontroller (32 bit MCUs).

• Interactive applications in 2-2.5D.

• User interface running at 30-60 frames per second.

Introduction

Documentation Link: Embedded Graphics 7

7



Hardware

8



• The basic hardware can be divided into 4 parts
• MCU

• Heavy Lifting

• RAM

• Framebuffer

• Flash

• Images, Fonts, Texts

• Display

• More information can be found in the documentation:

Hardware Selection

Hardware

9Documentation Link: Embedded Graphics

The Main parts 
Flash

Static data, stores the image, Fonts and texts
Ram

Mainly for framebuffer, which is where the calculated image is stored, and 
transferred from and to the display 

Display
Image from Ram (sizes, types, resolution)

MCU
Handles the heavy lifting, calculates the color, renders transfer images

Muliple set up with internal ram, flash, displays

Example: STM32H750B-DK, external flash and external ram are used for 
TouchGFX and the display is a LTDC display
https://www.st.com/en/evaluation-tools/stm32h750b-dk.html

9



Color Formats

10



• Digital images can be divided into small single components called "pixels"

• Pixels
• Single color

• RGB

• 0 to 255

• Opacity (Alpha - RGBA)

Color Formats

11Documentation Link: Color Formats

11



• Color Depths
• Amount of bits to describe a pixel

• Bits per pixel (BPP)

• Range 1 – 32

• Affects visual quality at the cost of memory

• The higher BPP,

the more memory is needed

• Low BPP can be

compensated with

Dithering

Color Formats

12

24 bpp

8 BPP – without dithering

Documentation Link: Color Depth

8 BPP – with dithering

Amount of info/bits to describe pixel.
1 - 2 colors
8 bpp - 256 colors 
24 bpp - 16777216 colors
32 bpp – 16,777,216 colors and corresponding opacity values

Range 16 bpp – 5 Red, 6 green, 5 blue
8/6 bits 2 pr. RGB

Dithering = Adding noise

12



Framebuffer

13



• What is a Framebuffer?
• A framebuffer contains pixel information

• A 2D memory block with the image to display

• The framebuffer size is determined by the

screen resolution of the display and the pixel BPP

Framebuffer

14

The 2D framebuffer, indexable by x, y

From framebuffer pixel values to colors on a display

Documentation Link: Framebuffer

14



• The amount of framebuffers can be divided into 3 strategies
• More than one (usually two)

• One

• Less than one

• Strategy impact on performance
• More than one gives better performance

• But cost more memory

• Calculating framebuffer cost
• The cost is 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑏𝑝𝑝 × 𝑛𝑟. 𝑜𝑓 𝑓𝑟𝑎𝑚𝑏𝑢𝑓𝑓𝑒𝑟𝑠 ÷ 8 𝑏𝑖𝑡𝑠

• Screen resolution at 800 x 480, color depth of 24 BPP and 2 framebuffers

• 800 ∗ 480 ∗ 24 𝑏𝑝𝑝 ∗ 2 𝑓𝑟𝑎𝑚𝑒𝑏𝑢𝑓𝑓𝑒𝑟𝑠 ÷ 8 𝑏𝑖𝑡𝑠 = 2.304 𝑀𝑏

Framebuffer

15Documentation Link: Framebuffer

15



Graphics Engine

16



Graphics Engine

Documentation Link: Graphics Engine 17

• TouchGFX is a retained mode graphics engine
• User manipulates an abstract model

• The engine translates the model to drawing operations

• The components in the model is referred to as "widgets"
• Graphics displayed by interacting with the widgets

• Interaction is done in the Designer or C++ code

• Handling of the drawing

17



Main Loop

18



• TouchGFX runs as an “infinite” loop
1. Collecting events

• Touchscreen and buttons

• Backend (Ticks)

2. Updating

• Changes the “state” of the widgets

based on the events collected

3. Rendering

• TouchGFX draws relevant updates

in the framebuffer

• After the loop, TouchGFX waits for a signal

and runs the loop again

Main Loop

19Documentation Link: Main Loop

TouchGFX three main acitvies

Ticks is called any time before a new frame is transferd therefor before a loop starts

To ensure that the rendering is synchronized with the display
Frames are rendered at a fixed rate, which makes it easier to setup an animation fx. 
1 sec animation at 60 Hz = 60 steps in the animation 

19



• Example

Main Loop

20Documentation Link: Main Loop

First press is collected and sent to button, 
button uses the information that it is pressed to change it’s picture 
and tells the engine to invalidate the area covering the button. 
The engine then update the framebuffer with the new picture. 
The release is then collected and sent to the button widget. 
Other than updating it’s own picture the button tells the screen it’s been clicked 
which is connected to a show text, and the text is added to the list of elements to 
update.
Then that picture is sent to the framebuffer to display on the screen. 

20



Framebuffer & Main Loop

21



Framebuffer & Main Loop

22Documentation Link: Handling the framebuffers

• Effect of the framebuffer strategy
• More than one framebuffer

• When a loop is done, the

framebuffer is switched

• Nothing has changed and 
the framebuffer is retransmitted

• If the rendering is to slow, the

the old framebuffer is retransmitted

22



• One framebuffer

• We have to draw in the same

framebuffer that is being

transmitted

• Creates risk for transmitting

part of the old frame “tearing”

• Solutions are only drawn when

transfer is done or

in the already transferred part

of the framebuffer

Framebuffer & Main Loop

23Documentation Link: Handling the framebuffers

23



Performance

24



• Good performance
• Desired graphics and animations

• High frame rate

• Usually the frame rate is around 60 Hz
• A loop therefor has 1 s / 60 = 0.01667 s = 16.67 ms

• Using more time results in a lower frame rate

Performance

25Documentation Link: Performance

25



• Example

Performance

Documentation Link: Performance 26

Left: STM32F746
Right: STM32H735

Notice the performance different

26



• What affects the rendering time?
• The amount of the updated screen

• Larger area = more computation

• Layers in graphics

• Each layer requires rendering

• Complexity of the rendered pixel

• Some widgets are heavier to render than others

• Transparency adds to complexity

• Hardware support for rendering

• Offloads the MCU

• Chrom-ART

Performance

27Documentation Link: What Affects the Rendering Time?

27



Performance

Documentation Link: What Affects the Rendering Time? 28

• Example

From the left

1: Is a box widget, fast to display since it is just a full pixel color and therefore no 
calculation
2: Is an image widget, fast to display, since we are coping pixel information from the 
flash. The amount of non-opaque pixel, in the image, can have an impact on 
the performance, since they need to be blended with the framebuffer
3: Is a texture mapper widget, slow to display, since the new pixels needs to 
be calculated before being drawn into the framebuffer.
4: Is a circle widget, slow to display, since the new pixels needs to be 
calculated before being drawn into the framebuffer.

28



Operation Systems

29



• Embedded devices handling more than the UI

• RTOS
• Interleaving tasks

• Ensure that the UI is not blocked by another proces or the like

• Communication between tasks

• Utilizing RTOS message queue

• FreeRTOS

• No RTOS
• Small setups with low complexity

Operation Systems

30Documentation Link: Operating Systems

30



More Info

31



• To learn more about the hardware and what to select, read the

Hardware Selection Introduction

• To get started with the UI development, read the

UI Development Introduction

• Or watch the presentation or workshop

UI Development – Fundamentals

UI Development - Getting Started

More info

32

32



© STMicroelectronics - All rights reserved.
ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. 
For additional information about ST trademarks, please refer to www.st.com/trademarks. 
All other product or service names are the property of their respective owners.

Thank you

33


