7

life.augmented

TouchGFX AL Development

8 Introduction

Agenda

1 Introduction

TouchGFX Abstraction Layer
Introduction

3 Abstraction Layer Architecture
4 TouchGFX Generator

o7

ife.augmented

The agenda for this video is a short introduction to the aims of this presentation,
to what the TouchGFX Abstraction layer is, to its architecture, and finaly an
introduction to the TouchGFX Generator.

Introduction

Introduction

Goal of this presentation

» Getting to know the TouchGFX Abstraction Layer and TouchGFX Generator
* Introduction to TouchGFX AL
» Abstraction Layer Architecture
» TouchGFX Generator

Target audience: Developers new to TouchGFX AL development

‘, Documentation Link: Documentation 4

life.augmented

What to expect of this presentation: it is aimed to TouchGFX beginners and
people interested in developing the Abstraction Layer for their project.

After this presentation you will have a general overview- and basic understanding
of the Abstraction Layer between TouchGFX and the hardware it runs on. The
Abstraction layer may be abbreviated to AL in the slides and documentation.

You will be introduced to the TouchGFX abstraction layer development process, to the
key responsibilities of the Abstraction Layer and how to work with the TouchGFX
Generator.

Introduction

Further reading
* You will find a lot of help afterwards in the TouchGFX documentation site:
http://support.touchgfx.com/

« Slides in this presentation will refer to relevant documentation pages. Links will be
in the lower right-hand corner of the slides

» A good place to start reading following this presentation is:
TouchGFX AL Development - Introduction

‘,’ Documentation Link: TouchGFX AL Development Introduction 5
1

ife.augmented

You will find the slides of this presentation in the TouchGFX online documentation
(https://support.touchgfx.com/docs/resources/presentations#touchgfx-technical-
introduction).

You can go through the other presentations, workshops and tutorials to
understand how TouchGFX works and how to get started on your Graphical user
interface project. (https://support.touchgfx.com/docs/resources/presentations and
https://support.touchgfx.com/docs/tutorials/tutorial-01)

Introduction

TouchGFX AL Development

Main Activities: TouchGFX AL
Development

Main components:

In this presentation we will focus on the TouchGFX AL development activity and the
TouchGFX Generator development workflow

‘,’ Documentation Link: TouchGFX AL Development Introduction 6

life.cugmented

In a TouchGFX application, the TouchGFX Abstraction Layer is the software component
that sits between the Board Initialization Code and the TouchGFX Engine. The Board
bring up phase is explained in the corresponding presentation.

The TouchGFX Engine is not an output of any main activity but is the starting point for
your TouchGFX project. The main task of the TouchGFX Abstraction layer is to tie
together the Engine with the hardware and the operating system.

Abstraction Layer Introduction

The abstraction layer consists of two different parts, the Hardware Abstraction Layer
and the Operating System Abstraction Layer.

Responsibilities of the TouchGFX Engine

A TouchGFX Abstraction Layer consists

Of . Frame update

+ Hardware Abstraction Layer (HAL) Toucharx Collect ‘ . TouchGPX Engine Hooks:

» Operating System Abstraction Layer

(OSAL) External Tasks
Interrupts
Ili Interrupts:

Main responsibilities of the Engine: : Py eacy

- Colct inputs =

» Update the Scene Model Available hooks and interrupts

* Render to the framebuffer

‘,’ Documentation Link: Responsibilities of the Abstraction Layer 8

life.augmented

The TouchGFX Engine’s main responsibility is to update the framebuffer to reflect the
current state of the application. It has a main loop that performs three basic steps
forever

1. It first collects the inputs, like the coordinates of a user’s touch or if a button has been
pressed or released

2. It updates the application Ul Model

3. and then renders the updated Model to the Framebuffer

The transfer of the framebuffer data to the display and the collection of external inputs
tasks are not directly handled by the engine. They are delegated from the engine to the
TouchGFX abstraction layer.

Responsibilities of the AL:

‘,’ Documentation Link: Responsibilities of the Abstraction Layer 9

ugmented

lite.c

Responsibilities of the Abstraction Layer

Synchronize TouchGFX Engine main Frame update

|00p Wlth dISp|ay tranSfer TouchGFX Collect ‘ Render TouchGFX Engine Hooks:
. Engine
Report touch and physical button events

Synchronize framebuffer access

Report the next available framebuffer Interrupts
area '11 Interrupts:

11: Display ready
Perform render operations _
Handle framebuffer transfer to display

Available hooks and interrupts

External Tasks

The main loop of the TouchGFX Engine will continuously update the framebuffer. This
process must be synchronized with the actual update frequency and availability of the
display to ensure that all frames will be transferred and displayed correctly on the
display. This synchronization is the responsibility of the abstraction layer.

If the process is not properly synchronized, the main loop might overwrite the
framebuffers before they have been transferred, and disturbing glitches will appear on
the display.

The TouchGFX abstraction layer also has the responsibility of controlling the framebuffer
memory area and its access, which means that all accesses to the framebuffer will go
through the abstraction layer.

The responsibilities of the abstraction layer are further detailed in the documentation in
the TouchGFX AL development introduction article.

Parallel RGB (LTDC) display interface example :

TouchGFX
Engine

External
Tasks

Interrupts

I

Lys

life.ougmented

Responsibilities of the Abstraction Layer

Previous Frame

&

Current Frame

Collect ,, Render

Next Frame

TouchGFX Engine
Hooks:

Execution flow in a setup with two framebuffers and LTDC interface

A

Interrupts:
11: Display ready

Documentation Link: Responsibilities of the Abstraction Layer 10

The TouchGFX abstraction layer is a passive software module. It does not have its own
thread so it must perform its actions through certain hooks. Those hooks are called from

the TouchGFX Engine’s main loop or through interrupts.

It is up to the AL developer to implement these hooks to ensure that the responsibilities
of the abstraction layer are respected . If the AL developer needs other means to
support the responsibilities, the developer can setup interrupts to activate at certain

points

The role and timing of the hooks and interrupts can be seen in this example. The /1:
Display ready interrupt is an example of a vertical synchronization interrupt. This
describes the overall design of the AL for this setup.

10

Abstraction Layer Architecture

11

Abstraction Layer Architecture

Responsibility reminder

Synchronize TouchGFX Engine HAL/OSAL TouchGFX Engine Main Loop blocks after rendering.
Main Loop with display transfer (required) Display signals TouchGFX Engine when ready to
process new frames.

Report Touch and Physical Events HAL (optional) If available, touch- and physical events (e.g. buttons)
can be reported to TouchGFX Engine.

Synchronize Framebuffer access =~ OSAL (required) Ensures that only one actor accesses a framebuffer.

Report next available Framebuffer HAL (required) Report where TouchGFX Engine should render next.

area Depends on the framebuffer strategy.
Perform Render Operations HAL (optional) Implementation of additional rendering capabilities,
e.g. DMA2D.
Handle Framebuffer transfer to HAL (required) Depends on display interface type. For e.g. SPI/FMC
display developers initiate the transfer manually when asked
to.
‘,’ Responsibilities description table Documentation Link: Abstraction Layer Architecture 12

life.augmented

As described in the previous section, the TouchGFX AL has a particular set of
responsibilities. The following table summarizes these responsibilities and in which area
they intervene; Responsibilities are either implemented in the hardware Abstraction
layer (so the part called hardware abstraction layer or HAL) or the operating system
abstraction layer which synchronizes with TouchGFX Engine through a real-time
operating system like FREERTOS. Note that not all steps are required to work with
TouchGFX, like collecting data from physical events or performing additional rendering
operations like the DMA2D.

12

Abstraction Layer Classes

¥

Framework

» HAL responsibilities implemented in sub-
classes of HAL based on STM32CubeMX
MCU configuration ouchGF

GeneratedHAL

» OSAL automatically generated based on
STM32CubeMX Middleware configuration

TouchGFX Generator

TouchGFXHAL
- CMSIS RTOS V1 or V2 e
+ Other RTOS to be implement by the developer
@ Read-only
Editable

Hierarchy of generated code

"I Documentation Link: Abstraction Layer Classes 13

life.augmented

The hardware abstraction layer is accessed by the TouchGFX Engine through sub-classes
of the hardware abstraction layer, which are generated by the TouchGFX Generator.
TouchGFX Generator is the main tool for the creation and development of the
Abstraction Layer. It generates the part of the hardware abstraction layer configured in
CubeMX. It also generates the Operating system abstraction layer.

The RTOS available are FREERTOS CMSIS V1 and V2. You can also work without an OS.
For other RTOS it is the task of the developers to implement this operating system
abstraction layer by themselves.

The common architecture of the hardware abstraction layer is shown in this figure.
Changes through user code can be made in the file called TouchGFXHAL, like for example
the number of framebuffers used and their addresses.

The Abstraction layer classes are further explained in the related articles in the
documentation.

13

Advanced Topics

» Development steps documentation

® TouchGFX Generator| @ User Constants

» Scenarios
v Displa
. LTDC/Parallel RGB Py .
)) Interface Custom
« FMC and SPI display interface Framebuffer Pixel Format RGB565
» Framebuffer strategies Width 480 pixels
Height 272 pixels
Framebuffer Strategy Partial Buffer
. WOTkShOpS o Number of Blocks 2
* Block Size 1000 bytes
Partial framebuffer scenario
‘,’ Documentation Link: Specific Scenarios 14

life.augmented

As the abstraction layer development and the steps to follow can be complicated, we
recommend developers to go through the related articles. The responsibilities are
further explained, with also sampled code from the generated files.

For concrete examples, some specific scenarios are gone through in the documentation,
like how to support various display interfaces .

Workshops are also available on the official ST youtube channel and in the Resources
section in the documentation. Most TouchGFX development workshops will and have to
go through the TouchGFX abstraction layer and the TouchGFX Engine configuration in
CubeMX.

TouchGFX Generator

This section is an introduction to TouchGFX Generator and not a user guide.

15

TouchGFX Generator

The TouchGFX Abstraction Layer is generated by TouchGFX Generator
* TouchGFX Generator is part of the X-CUBE-TouchGFX package

» When enabled, TouchGFX Generator creates a TouchGFX Abstraction Layer
accordingly to the user settings

Lys

life.augmented

Documentation Link: TouchGFX Generator 16

TouchGFX Generator is a STM32CubeMX Additional-Software component that helps
developers configure TouchGFX to run on their hardware platform. Based on the user’s
settings in CubeMX, the TouchGFX Generator will generate the files required to
configure a working TouchGFX project. This include files for the TouchGFX Hardware
Abstraction Layer, TouchGFX Operating System Abstraction Layer and TouchGFX
Configuration.

Once code is generated through CubeMX, the TouchGFX project can be opened with the
TouchGFX Designer tool where the Ul is developed. TouchGFX Designer automatically
adds any additional generated code files to the target IDE project that was configured
for the project in CubeMX.

16

TouchGFX Generator

Dependencies group — e LT 1t
+ List of warnings or information based on = wemse | s s s
STM32CubeMX configuration © 0k
Display group
 Settings related to interface, format, el
. . Computing v ~ ® Dependencies
dimensions and strategy . O s gt 2 et
Driver group o> e
» Settings related to driving and s || o
accelerating TouchGFX as well as e O Syt eos
selecting the OSAL
TouchGFX Generator user interface in STM32CubeMX
‘,’ Documentation Link: TouchGFX Generator 17

life.augmented

The user interface of TouchGFX generator can be seen in this screenshot of
CubeMX. It consists of three groups: the dependencies, display and driver groups
*The Dependencies group - contains notifications to the developer about
dependencies, warnings or concrete errors in the configuration. The group is hidden if
no entries exist.

*The Display group- which contains settings related to display such as interface,
framebuffer bitdepth, width and height. The framebuffer strategies available are single
and double framebuffers, or the partial frame buffer strategy. This strategy is aimed for
scenarios looking to lower the memory the memory usage. These settings directly
impact the size of the canvas of the TouchGFX project as well as the code generated for
assets.

*The Driver group - allows the user to opt-in for a number of ready-made drivers related
to the tick source of the application, graphics acceleration and RTOS. Since CubeMX
supports FreeRTOS (CMSIS RTOS v1 and v2) configurations, TouchGFX Generator
provides drivers for each of these options.

17

TouchGFX Generator Code Architecture

The generated Abstraction Layer is
created inside the TouchGFX folder
when generating from CubeMX

» User code to be implemented in
files not under the /target/generated
folder

» Dedicated sections are highlighted in the
code

Lys

life.augmented

Generated folder architecture

Documentation Link: Generated Code Architecture 18

CubeMX will create a TouchGFX folder for as project as seen in this screenshot. The
folder always contains the same files, regardless of configuration, while the content of
those files changes according to CubeMX and User configuration.

The listing below shows an overview of the content of a CubeMX project with TouchGFX
Generator enabled. Thanks to the hierarchy of the hardware abstraction layer, the
files that are not listed under the generated folder can be modified with user code in
the dedicated zones for further configuration. You can for example allocate space for a
third framebuffer called animation storage to enable complex animations in your

project.

18

TouchGFX Generator

* Next step: TouchGFX GUI development in TouchGFX Designer

 Updates to TouchGFX Generator configuration reflected in TouchGFX Designer
» Pixel format, screen dimensions, ...

+ Additional configuration code to be expected for custom hardware platforms

» TouchGFX Generator configurations in the application templates of ST development kits can be
used as source of inspiration

Lys

ife.augmented

Documentation Link: TouchGFX Generator 19

After successfully setting the TouchGFX abstraction layer, The next step is now
to start the graphical user interface application with TouchGFX Designer.

The settings and changes made in the Generator will be shown in Designer, like
the size of the display

For custom hardware platforms the TouchGFX Generator can generate most of the
abstraction layer. The remaining parts to be developed are pointed out through code
comments in the generated files and notifications through the TouchGFX Generator.

Have a look at the TouchGFX abstraction layer workshop and TouchGFX
generator documentation to further understand how to work with it. The
application templates for specific ST development kits available in TouchGFX
Designer can be used as source of configuration.

19

Links

Further reading
* You will find a lot of help afterwards in the TouchGFX documentation site:

http://support.touchgfx.com/

« Slides in this presentation will refer to relevant documentation pages. Links will be
in the lower right-hand corner of the slides

» A good place to start reading following this presentation is:
TouchGFX AL Development — Introduction

» Write your questions in the ST forum “Community” to get help from other users
and ST employees

STMicroelectronics Forum

‘,’ Documentation Link: TouchGFX AL Development steps
1

ife.augmented

20

This is a reminder that the slides and additional knowledge can be found in the
official documentation. The slides have links to the relevant articles. You can ask
any questions on the official ST forum.

Thank you

20

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. ‘
For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

life.augmented

Thank you for listening to this introduction to the TouchGFX abstraction layer and
to the TouchGFX Generator

21

