
TouchGFX AL Development
Introduction

1

Agenda

1 Introduction

2
TouchGFX Abstraction Layer
Introduction

3 Abstraction Layer Architecture

4 TouchGFX Generator

2

The agenda for this video is a short introduction to the aims of this presentation,

to what the TouchGFX Abstraction layer is, to its architecture, and finaly an

introduction to the TouchGFX Generator.

2

Introduction

3

Goal of this presentation

• Getting to know the TouchGFX Abstraction Layer and TouchGFX Generator

• Introduction to TouchGFX AL

• Abstraction Layer Architecture

• TouchGFX Generator

Target audience: Developers new to TouchGFX AL development

Introduction

4Documentation Link: Documentation

What to expect of this presentation: it is aimed to TouchGFX beginners and

people interested in developing the Abstraction Layer for their project.

After this presentation you will have a general overview- and basic understanding

of the Abstraction Layer between TouchGFX and the hardware it runs on. The

Abstraction layer may be abbreviated to AL in the slides and documentation.

You will be introduced to the TouchGFX abstraction layer development process, to the

key responsibilities of the Abstraction Layer and how to work with the TouchGFX

Generator.

4

Further reading

• You will find a lot of help afterwards in the TouchGFX documentation site:

http://support.touchgfx.com/

• Slides in this presentation will refer to relevant documentation pages. Links will be
in the lower right-hand corner of the slides

• A good place to start reading following this presentation is:

TouchGFX AL Development - Introduction

Introduction

5Documentation Link: TouchGFX AL Development Introduction

You will find the slides of this presentation in the TouchGFX online documentation

(https://support.touchgfx.com/docs/resources/presentations#touchgfx-technical-

introduction).

You can go through the other presentations, workshops and tutorials to

understand how TouchGFX works and how to get started on your Graphical user

interface project. (https://support.touchgfx.com/docs/resources/presentations and

https://support.touchgfx.com/docs/tutorials/tutorial-01)

5

TouchGFX AL Development

In this presentation we will focus on the TouchGFX AL development activity and the
TouchGFX Generator development workflow

Introduction

6

Main Activities:

Main components:

Documentation Link: TouchGFX AL Development Introduction

In a TouchGFX application, the TouchGFX Abstraction Layer is the software component

that sits between the Board Initialization Code and the TouchGFX Engine. The Board

bring up phase is explained in the corresponding presentation.

The TouchGFX Engine is not an output of any main activity but is the starting point for

your TouchGFX project. The main task of the TouchGFX Abstraction layer is to tie

together the Engine with the hardware and the operating system.

6

Abstraction Layer Introduction

The abstraction layer consists of two different parts, the Hardware Abstraction Layer

and the Operating System Abstraction Layer.

7

A TouchGFX Abstraction Layer consists
of:

• Hardware Abstraction Layer (HAL)

• Operating System Abstraction Layer

(OSAL)

Main responsibilities of the Engine:

• Collect inputs

• Update the Scene Model

• Render to the framebuffer

Responsibilities of the TouchGFX Engine

8Documentation Link: Responsibilities of the Abstraction Layer

Available hooks and interrupts

The TouchGFX Engine’s main responsibility is to update the framebuffer to reflect the

current state of the application. It has a main loop that performs three basic steps

forever

1. It first collects the inputs, like the coordinates of a user’s touch or if a button has been

pressed or released

2. It updates the application UI Model

3. and then renders the updated Model to the Framebuffer

The transfer of the framebuffer data to the display and the collection of external inputs

tasks are not directly handled by the engine. They are delegated from the engine to the

TouchGFX abstraction layer.

8

Responsibilities of the AL:

• Synchronize TouchGFX Engine main
loop with display transfer

• Report touch and physical button events

• Synchronize framebuffer access

• Report the next available framebuffer

area

• Perform render operations

• Handle framebuffer transfer to display

Responsibilities of the Abstraction Layer

9Documentation Link: Responsibilities of the Abstraction Layer

Available hooks and interrupts

The main loop of the TouchGFX Engine will continuously update the framebuffer. This

process must be synchronized with the actual update frequency and availability of the

display to ensure that all frames will be transferred and displayed correctly on the

display. This synchronization is the responsibility of the abstraction layer.

If the process is not properly synchronized, the main loop might overwrite the

framebuffers before they have been transferred, and disturbing glitches will appear on

the display.

The TouchGFX abstraction layer also has the responsibility of controlling the framebuffer

memory area and its access, which means that all accesses to the framebuffer will go

through the abstraction layer.

The responsibilities of the abstraction layer are further detailed in the documentation in

the TouchGFX AL development introduction article.

9

Parallel RGB (LTDC) display interface example :

Responsibilities of the Abstraction Layer

10Documentation Link: Responsibilities of the Abstraction Layer

Execution flow in a setup with two framebuffers and LTDC interface

The TouchGFX abstraction layer is a passive software module. It does not have its own

thread so it must perform its actions through certain hooks. Those hooks are called from

the TouchGFX Engine’s main loop or through interrupts.

It is up to the AL developer to implement these hooks to ensure that the responsibilities

of the abstraction layer are respected . If the AL developer needs other means to

support the responsibilities, the developer can setup interrupts to activate at certain

points

The role and timing of the hooks and interrupts can be seen in this example. The I1:

Display ready interrupt is an example of a vertical synchronization interrupt. This

describes the overall design of the AL for this setup.

10

Abstraction Layer Architecture

11

Responsibility reminder

Abstraction Layer Architecture

12Documentation Link: Abstraction Layer ArchitectureResponsibilities description table

As described in the previous section, the TouchGFX AL has a particular set of

responsibilities. The following table summarizes these responsibilities and in which area

they intervene; Responsibilities are either implemented in the hardware Abstraction

layer (so the part called hardware abstraction layer or HAL) or the operating system

abstraction layer which synchronizes with TouchGFX Engine through a real-time

operating system like FREERTOS. Note that not all steps are required to work with

TouchGFX, like collecting data from physical events or performing additional rendering

operations like the DMA2D.

12

• HAL responsibilities implemented in sub-
classes of HAL based on STM32CubeMX

MCU configuration

• OSAL automatically generated based on

STM32CubeMX Middleware configuration

• CMSIS RTOS V1 or V2

• Other RTOS to be implement by the developer

Abstraction Layer Classes

13Documentation Link: Abstraction Layer Classes

Hierarchy of generated code

The hardware abstraction layer is accessed by the TouchGFX Engine through sub-classes

of the hardware abstraction layer, which are generated by the TouchGFX Generator.

TouchGFX Generator is the main tool for the creation and development of the

Abstraction Layer. It generates the part of the hardware abstraction layer configured in

CubeMX. It also generates the Operating system abstraction layer.

The RTOS available are FREERTOS CMSIS V1 and V2. You can also work without an OS.

For other RTOS it is the task of the developers to implement this operating system

abstraction layer by themselves.

The common architecture of the hardware abstraction layer is shown in this figure.

Changes through user code can be made in the file called TouchGFXHAL, like for example

the number of framebuffers used and their addresses.

The Abstraction layer classes are further explained in the related articles in the

documentation.

13

• Development steps documentation

• Scenarios

• LTDC/Parallel RGB

• FMC and SPI display interface

• Framebuffer strategies

• Workshops

Advanced Topics

14Documentation Link: Specific Scenarios

Partial framebuffer scenario

As the abstraction layer development and the steps to follow can be complicated, we

recommend developers to go through the related articles. The responsibilities are

further explained, with also sampled code from the generated files.

For concrete examples, some specific scenarios are gone through in the documentation,

like how to support various display interfaces .

Workshops are also available on the official ST youtube channel and in the Resources

section in the documentation. Most TouchGFX development workshops will and have to

go through the TouchGFX abstraction layer and the TouchGFX Engine configuration in

CubeMX.

14

TouchGFX Generator

This section is an introduction to TouchGFX Generator and not a user guide.

15

The TouchGFX Abstraction Layer is generated by TouchGFX Generator

• TouchGFX Generator is part of the X-CUBE-TouchGFX package

• When enabled, TouchGFX Generator creates a TouchGFX Abstraction Layer
accordingly to the user settings

TouchGFX Generator

16Documentation Link: TouchGFX Generator

TouchGFX Generator is a STM32CubeMX Additional-Software component that helps

developers configure TouchGFX to run on their hardware platform. Based on the user’s

settings in CubeMX, the TouchGFX Generator will generate the files required to

configure a working TouchGFX project. This include files for the TouchGFX Hardware

Abstraction Layer, TouchGFX Operating System Abstraction Layer and TouchGFX

Configuration.

Once code is generated through CubeMX, the TouchGFX project can be opened with the

TouchGFX Designer tool where the UI is developed. TouchGFX Designer automatically

adds any additional generated code files to the target IDE project that was configured

for the project in CubeMX.

16

Dependencies group

• List of warnings or information based on
STM32CubeMX configuration

Display group

• Settings related to interface, format,
dimensions and strategy

Driver group

• Settings related to driving and

accelerating TouchGFX as well as
selecting the OSAL

TouchGFX Generator

17Documentation Link: TouchGFX Generator

TouchGFX Generator user interface in STM32CubeMX

The user interface of TouchGFX generator can be seen in this screenshot of
CubeMX. It consists of three groups: the dependencies, display and driver groups

•The Dependencies group - contains notifications to the developer about

dependencies, warnings or concrete errors in the configuration. The group is hidden if

no entries exist.

•The Display group- which contains settings related to display such as interface,

framebuffer bitdepth, width and height. The framebuffer strategies available are single

and double framebuffers, or the partial frame buffer strategy. This strategy is aimed for

scenarios looking to lower the memory the memory usage. These settings directly

impact the size of the canvas of the TouchGFX project as well as the code generated for

assets.

•The Driver group - allows the user to opt-in for a number of ready-made drivers related

to the tick source of the application, graphics acceleration and RTOS. Since CubeMX

supports FreeRTOS (CMSIS RTOS v1 and v2) configurations, TouchGFX Generator

provides drivers for each of these options.

17

The generated Abstraction Layer is

created inside the TouchGFX folder
when generating from CubeMX

• User code to be implemented in
files not under the /target/generated

folder

• Dedicated sections are highlighted in the

code

TouchGFX Generator Code Architecture

18Documentation Link: Generated Code Architecture

Generated folder architecture

CubeMX will create a TouchGFX folder for as project as seen in this screenshot. The

folder always contains the same files, regardless of configuration, while the content of

those files changes according to CubeMX and User configuration.

The listing below shows an overview of the content of a CubeMX project with TouchGFX

Generator enabled. Thanks to the hierarchy of the hardware abstraction layer, the

files that are not listed under the generated folder can be modified with user code in

the dedicated zones for further configuration. You can for example allocate space for a

third framebuffer called animation storage to enable complex animations in your

project.

18

• Next step: TouchGFX GUI development in TouchGFX Designer

• Updates to TouchGFX Generator configuration reflected in TouchGFX Designer

• Pixel format, screen dimensions, …

• Additional configuration code to be expected for custom hardware platforms

• TouchGFX Generator configurations in the application templates of ST development kits can be

used as source of inspiration

TouchGFX Generator

19Documentation Link: TouchGFX Generator

After successfully setting the TouchGFX abstraction layer, The next step is now

to start the graphical user interface application with TouchGFX Designer.

The settings and changes made in the Generator will be shown in Designer, like

the size of the display

For custom hardware platforms the TouchGFX Generator can generate most of the

abstraction layer. The remaining parts to be developed are pointed out through code

comments in the generated files and notifications through the TouchGFX Generator.

Have a look at the TouchGFX abstraction layer workshop and TouchGFX

generator documentation to further understand how to work with it. The

application templates for specific ST development kits available in TouchGFX

Designer can be used as source of configuration.

19

Further reading

• You will find a lot of help afterwards in the TouchGFX documentation site:

http://support.touchgfx.com/

• Slides in this presentation will refer to relevant documentation pages. Links will be
in the lower right-hand corner of the slides

• A good place to start reading following this presentation is:

TouchGFX AL Development – Introduction

• Write your questions in the ST forum “Community” to get help from other users

and ST employees

STMicroelectronics Forum

Links

20Documentation Link: TouchGFX AL Development steps

This is a reminder that the slides and additional knowledge can be found in the

official documentation. The slides have links to the relevant articles. You can ask

any questions on the official ST forum.

Thank you

20

© STMicroelectronics - All rights reserved.
ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

Thank you

Thank you for listening to this introduction to the TouchGFX abstraction layer and

to the TouchGFX Generator

21

