

TouchGFX AL Development Introduction

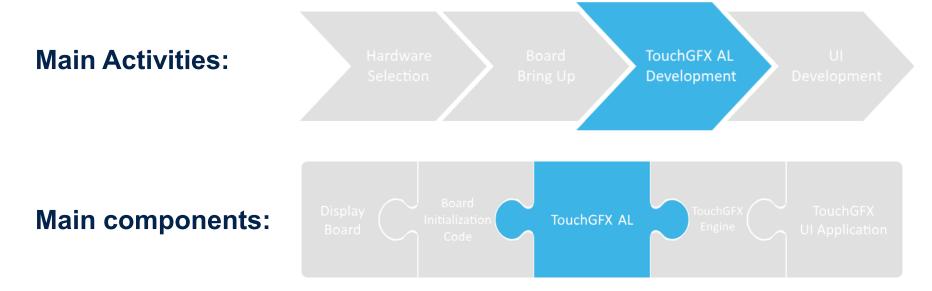
Agenda

- 1 Introduction
- TouchGFX Abstraction Layer Introduction
- 3 Abstraction Layer Architecture
- 4 TouchGFX Generator

Goal of this presentation

- Getting to know the TouchGFX Abstraction Layer and TouchGFX Generator
 - Introduction to TouchGFX AL
 - Abstraction Layer Architecture
 - TouchGFX Generator

Target audience: Developers new to TouchGFX AL development


Further reading

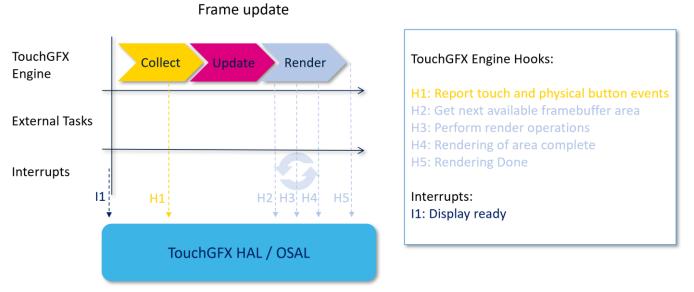
- You will find a lot of help afterwards in the TouchGFX documentation site:

 **Intro-Variable of the control of the co
 - http://support.touchgfx.com/
- Slides in this presentation will refer to relevant documentation pages. Links will be in the lower right-hand corner of the slides
- A good place to start reading following this presentation is:
 - TouchGFX AL Development Introduction

TouchGFX AL Development

In this presentation we will focus on the TouchGFX AL development activity and the TouchGFX Generator development workflow

Abstraction Layer Introduction

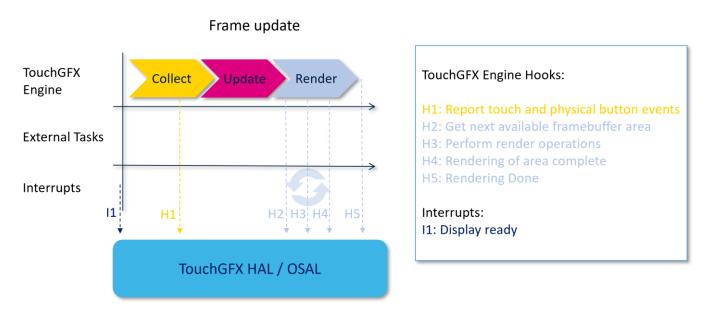

Responsibilities of the TouchGFX Engine

A TouchGFX Abstraction Layer consists of:

- Hardware Abstraction Layer (HAL)
- Operating System Abstraction Layer (OSAL)

Main responsibilities of the Engine:

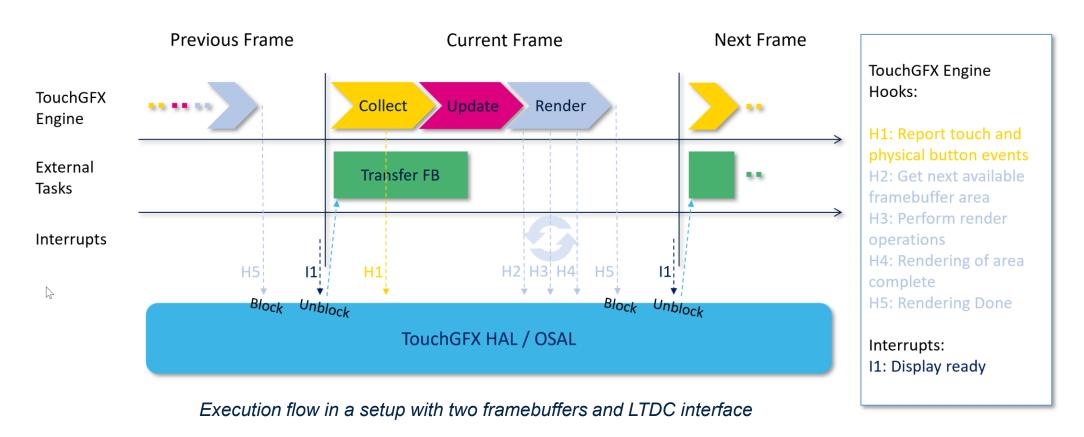
- Collect inputs
- Update the Scene Model
- Render to the framebuffer


Available hooks and interrupts

Responsibilities of the Abstraction Layer

Responsibilities of the AL:

- Synchronize TouchGFX Engine main loop with display transfer
- Report touch and physical button events
- Synchronize framebuffer access
- Report the next available framebuffer area
- Perform render operations
- Handle framebuffer transfer to display



Available hooks and interrupts

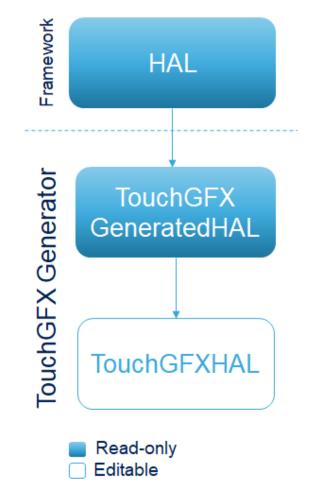
Responsibilities of the Abstraction Layer

Parallel RGB (LTDC) display interface example:

Abstraction Layer Architecture

Abstraction Layer Architecture

Responsibility reminder

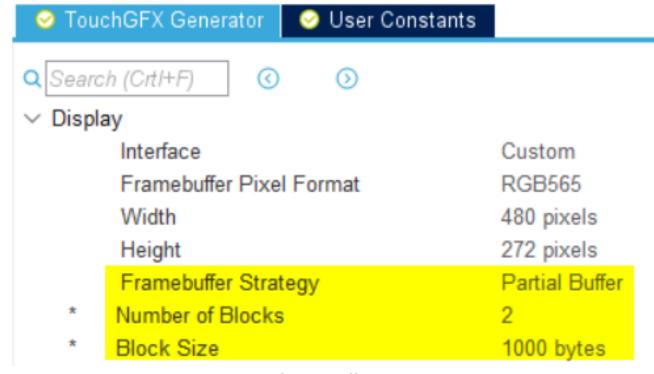

Responsibility	Area	Description
Synchronize TouchGFX Engine Main Loop with display transfer	HAL/OSAL (required)	TouchGFX Engine Main Loop blocks after rendering. Display signals TouchGFX Engine when ready to process new frames.
Report Touch and Physical Events	HAL (optional)	If available, touch- and physical events (e.g. buttons) can be reported to TouchGFX Engine.
Synchronize Framebuffer access	OSAL (required)	Ensures that only one actor accesses a framebuffer.
Report next available Framebuffer area	HAL (required)	Report where TouchGFX Engine should render next. Depends on the framebuffer strategy.
Perform Render Operations	HAL (optional)	Implementation of additional rendering capabilities, e.g. DMA2D.
Handle Framebuffer transfer to display	HAL (required)	Depends on display interface type. For e.g. SPI/FMC developers initiate the transfer manually when asked to.

Abstraction Layer Classes

 HAL responsibilities implemented in subclasses of HAL based on STM32CubeMX MCU configuration

- OSAL automatically generated based on STM32CubeMX Middleware configuration
 - CMSIS RTOS V1 or V2
 - Other RTOS to be implement by the developer

Hierarchy of generated code



Advanced Topics

Development steps documentation

- Scenarios
 - LTDC/Parallel RGB
 - FMC and SPI display interface
 - Framebuffer strategies

Workshops

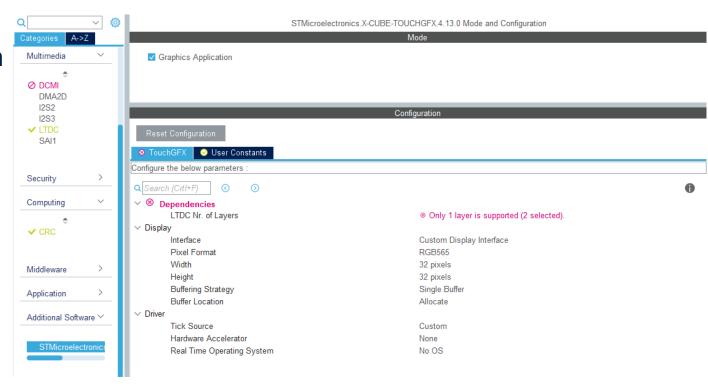
Partial framebuffer scenario

The TouchGFX Abstraction Layer is generated by TouchGFX Generator

TouchGFX Generator is part of the X-CUBE-TouchGFX package

 When enabled, TouchGFX Generator creates a TouchGFX Abstraction Layer accordingly to the user settings

Dependencies group


 List of warnings or information based on STM32CubeMX configuration

Display group

 Settings related to interface, format, dimensions and strategy

Driver group

 Settings related to driving and accelerating TouchGFX as well as selecting the OSAL

TouchGFX Generator user interface in STM32CubeMX

TouchGFX Generator Code Architecture

The generated Abstraction Layer is created inside the TouchGFX folder when generating from CubeMX

- User code to be implemented in files not under the /target/generated folder
 - Dedicated sections are highlighted in the code

```
.mxproject
myproject.ioc
-Core
-Drivers
-EWARM
-Middlewares
-TouchGFX
    ApplicationTemplate.touchgfx.part
        app_touchgfx.c
        app touchgfx.h
        STM32TouchController.cpp
        STM32TouchController.hpp
        TouchGFXGPIO.cpp
        TouchGFXHAL.cpp
        TouchGFXHAL.hpp
        generated-
            OSWrappers.cpp
            TouchGFXConfiguration.cpp
            TouchGFXGeneratedHAL.cpp
            TouchGFXGeneratedHAL.hpp
```

Generated folder architecture

Next step: TouchGFX GUI development in TouchGFX Designer

- Updates to TouchGFX Generator configuration reflected in TouchGFX Designer
 - Pixel format, screen dimensions, ...
- Additional configuration code to be expected for custom hardware platforms
 - TouchGFX Generator configurations in the application templates of ST development kits can be used as source of inspiration

Links

Further reading

- You will find a lot of help afterwards in the TouchGFX documentation site: http://support.touchgfx.com/
- Slides in this presentation will refer to relevant documentation pages. Links will be in the lower right-hand corner of the slides
- A good place to start reading following this presentation is:
 - <u>TouchGFX AL Development Introduction</u>
- Write your questions in the ST forum "Community" to get help from other users and ST employees
 - STMicroelectronics Forum

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

