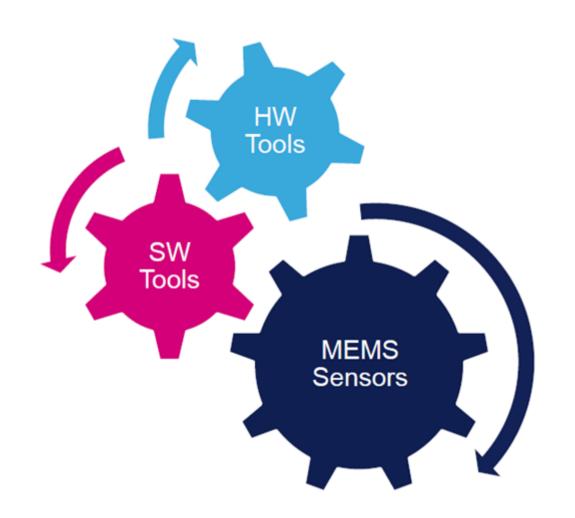


Development tools

ST MEMS workshop, Italy

November 2019



Agenda 2

Hardware tools

Software tools

Hardware tools

Sensors Evaluation boards

STM32Nucleo expansion X-NUCLEO-IKS01A3

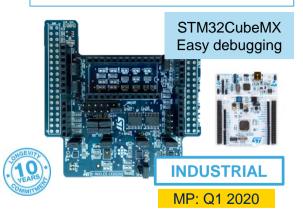
Profi MEMS tool STEVAL-MKI109V3


Evaluate All ST sensors through DIL24 adapter

AUTOMOTIVE

INDUSTRIAL

CONSUMER


BlueTile STEVAL-BCN002V1B

SensorTile.Box STEVAL-MKSBOX1V1

STM32Nucleo expansion X-NUCLEO-IKS02A1

STWIN: Wireless Industrial Node
STEVAL-STWINKT1

X-NUCLEO-IKS01A3

Motion MEMS and environmental sensor expansion board for STM32 Nucleo

The X-NUCLEO-IKS01A3 is the NEW motion MEMS and environmental sensor evaluation board system with consumer products

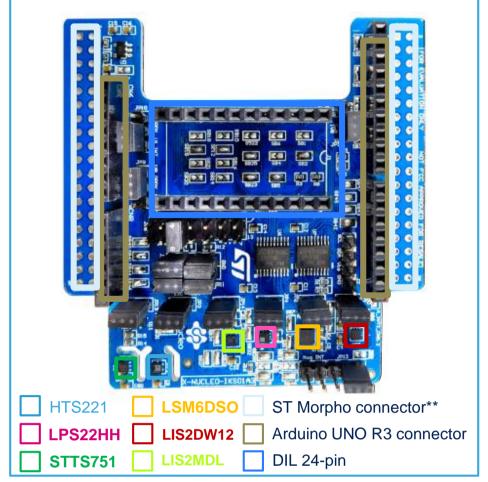
Key products on board:

LSM6DSO: MEMS 3D accelerometer $(\pm 2/\pm 4/\pm 8/\pm 16 \text{ g}) + 3D$ gyroscope

 $(\pm 245/\pm 500/\pm 2000 \text{ dps})$

LIS2MDL: MEMS 3D magnetometer (±50 gauss)

LIS2DW12: MEMS 3D accelerometer (±2/±4/±8/±16 g)


LPS22HH: MEMS pressure sensor (260-1260 hPa)

HTS221: Capacitive digital relative humidity and temperature

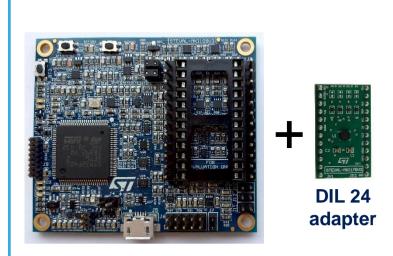
STTS751: digital temperature sensor (-40 °C to +125 °C)

DIL 24-pin: Socket available for additional MEMS adapters

I²C, SPI support

** Connector for the STM32 Nucleo Board

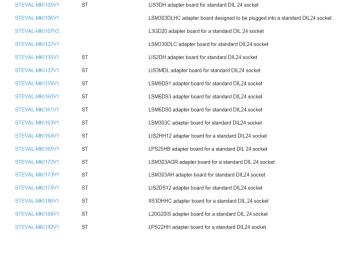
Info available at X-NUCLEO-IKS01A3


STEVAL-MKI109V3

Part Numbe

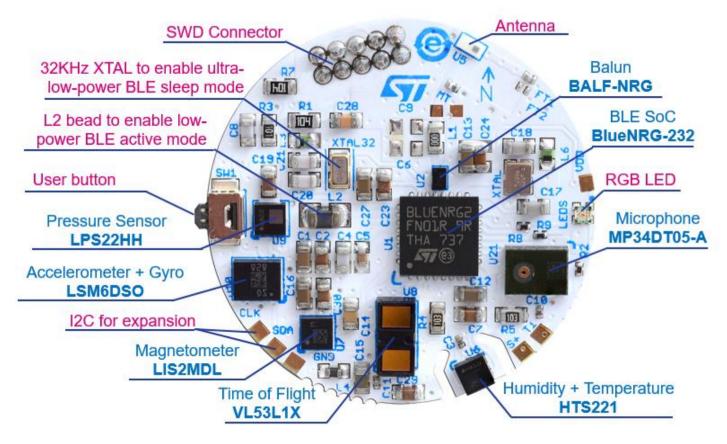
▲ Manufacture

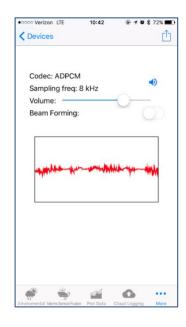
Professional MEMS tool


- Professional MEMS tool (STEVAL-MKI109V3) motherboard is a complete, ready-to-use platform for the evaluation of STMicroelectronics MEMS products.
- It includes a high-performance 32-bit microcontroller which functions as a bridge between the sensors and a PC, on which you can download and run the graphical user interface (GUI) Unico or dedicated software routines for customized applications

Professional MEMS tool (STEVAL-MKI109V3)

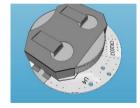
Unico – GUI for Windows PC (STSW-MKI109W)





Info available at STEVAL-MKI109V3 STSW-MKI109W

BlueTile STEVAL-BCN002V1B



MotionFX library

Bottom view

life.augmented

Available soon: STEVAL-BCN002V1B

SensorTile.box Play with ST sensors

A ready-to-go IoT Node

Built into a compact IP54 casing Bundled with app for Smartphone

X-NUCLEO-IKS02A1

with Industrial products

Motion MEMS and environmental sensor expansion board for STM32 Nucleo for Industrial

 This is the NEW motion MEMS and environmental sensor evaluation board system with INDUSTRIAL products

Key products on board:

ISM330DHCX MEMS – 6-axis IMU - accelerometer / gyroscope IIS2DLPC MEMS 3D accelerometer II2DMC MEMS 3D Magnetometer IMP34DT05 MEMS microphone

DIL 24-pin Socket available for additional MEMS adapters and other sensors

I²C, SPI support

Key features:

- Multi-sensing wireless platform implementing vibration monitoring and ultrasound detection
- Built around STWIN core system board with processing, sensing, connectivity and expansion capabilities
- Micro SD Card slot for standalone data logging applications
- Wireless BLE4.2 (on-board) and Wi-Fi (with STEVAL-STWINWFV1 expansion board), and wired **RS485** and **USB OTG** connectivity

STWIN SensorTile kit 10

Industrial IoT sensors:

- **IIS3DWB** ultra-wide bandwidth MEMS vibrometer up to 5 kHz
- ISM330DHCX 3D accelerometer + 3D Gyro iNEMO inertial measurement unit with machine learning core
- **IIS2DH** ultra-low-power high performance MEMS motion sensor
- **IIS2MDC** ultra-low-power 3-axis magnetometer
- **LPS22HH** digital absolute pressure sensor
- HTS221 relative humidity and temperature sensor
- **STTS751** low-voltage digital local temperature sensor
- **IMP34DT05** industrial grade digital MEMS microphone
- **MP23ABS1** wideband analog MEMS microphone

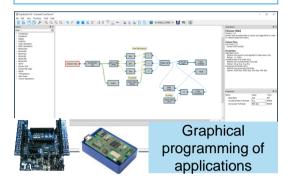
Software tools

Sensors Software

PC software Unicleo-GUI

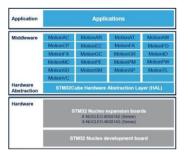
life.auamented

Companion GUI for X-NUCLEO, SensorTile.box, ...



PC software UNICO GUI

PC software **Algobuilder**


Phone App ST BLE Sensor

Display, program and sensor data push to Clouds

Embedded software
X-CUBE-MEMS1, Libraries,
Function packs

Function packs support combination of stacked X-NUCLEOs or IoT nodes

Low level drivers & Examples (incl. MLC/FSM)

github.com/STMicroelectronics/

STMems Standard C drivers

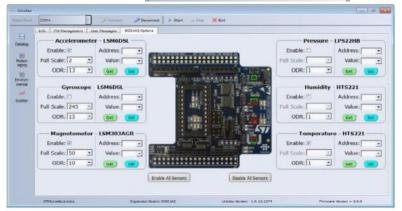
Platform-independent drivers source code for and environmental sensors, based on C stan

● C 本 BSD-3-Clause ¥ 155 ★ 142 €

STMems_Android_Sensor_HAL_IIO

This repository contains ST Android sensor Hardware ${\it A}$ MEMS Linux IIO drivers

● C++ 🏚 Apache-2.0 🖁 6 ★ 16 ① 0 🐧 0 l


Regularly updated

$STMems_Machine_Learning_Core$

08:10:14.25 08:10:14.70 08:10:15.15 Steps: 36 Cadence: 117 Download Off-line Data

Unicleo-GUI 13

- Unicleo-GUI is a graphical user interface (GUI) for the X-CUBF-MFMS1 / XT1
- **Demonstrates** the functionality of ST sensor devices and SW libraries
- The key features of this application:
 - Displays data from connected sensors in various views (time plot, scatter plot, 3D plot)
 - Saves data to tab separated (TSV) or comma separated (CSV) files
 - · Directly reads from and writes to sensor registers
- Supports wireless communication over Bluetooth-LE – Windows 8.1 or 10 needed!
- Needs to be installed in addition to Nucleo packages.

Available for download at Unicleo-GUI

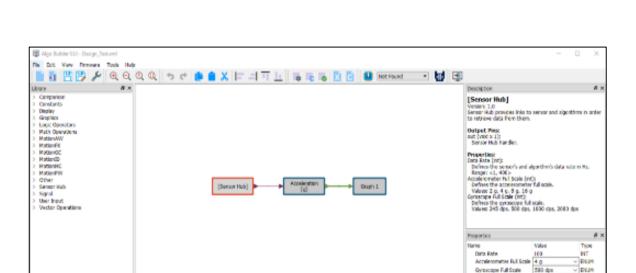
UNICO GUI 14

- All Motion/ Environmental MEMS adapter boards (STEVAL-MKIxxx) supported
 - Compatible with Profi MEMS tool (STEVAL-MKI109V3)
- Cross-platform GUI for Windows, Linux and MacOS X
 - STSW-MKI109W for Windows OS
 - STSW-MKI109L for Linux OS
 - STSW-MKI109M for Mac OS

Features:

- Device registers configuration, Data logging
- Configuration file (.ucf) creation & C code generation
- FSM / MLC development support
- Current measurement & Power supply management
- H/W interrupts visualization and logging
- Demonstration tools (FIFO, 6D, Inclinometer, FFT, etc...)

Device Configuration

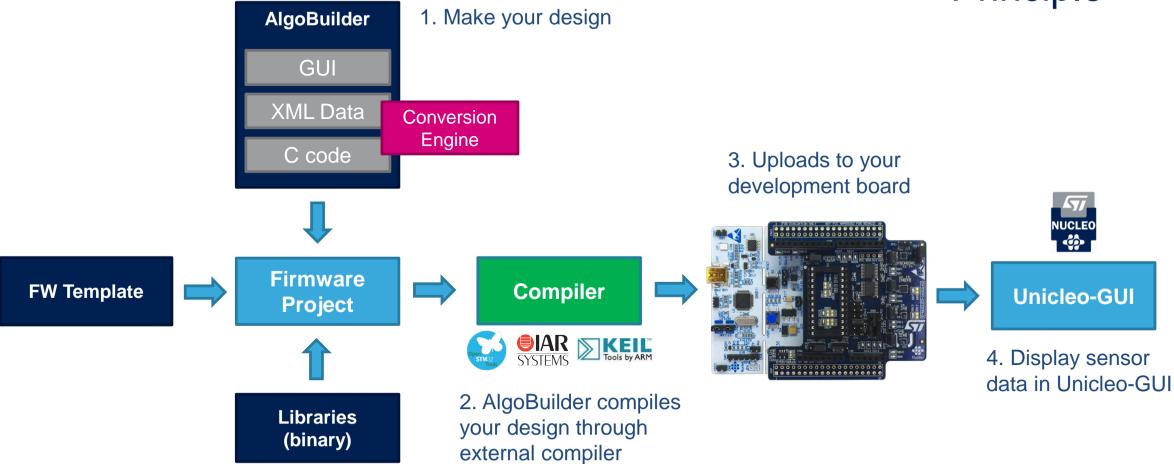


CONFIGURATION

Available for download at Unico GUI

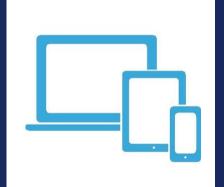
AlgoBuilder i

- PC application for graphical design of algorithms using ST MEMS sensors
- Simple graphical design (drag and drop, connect, set properties)
- Wide range of function blocks including motion sense algorithms (e.g. Sensor fusion, gyroscope and magnetometer calibration or pedometer)
- C code is generated from the graphical design
- Outputs from generated firmware can be displayed in Unicleo-GUI application


Available for download at AlgoBuilder

AlgoBuilder

Principle


Support for STM32 NUCLEO-F401RE or NUCLEO-L476RG with connected X-NUCLEO-IKS01A2 expansion board and SensorTile STEVAL-STLKT01V1

ST Sensors Finder

Mobile Application

Free application for smartphones and tablets

- Explore ST MEMS and Sensors portfolio
- Evaluation tools and applications overview
- Parametric and part number search engine
- Quick sharing by e-mail or social media in a click
- Technical documentation easily accessible
- Samples ordering

ST BLE Sensor for Android and iOS 18

ST BLE Sensor

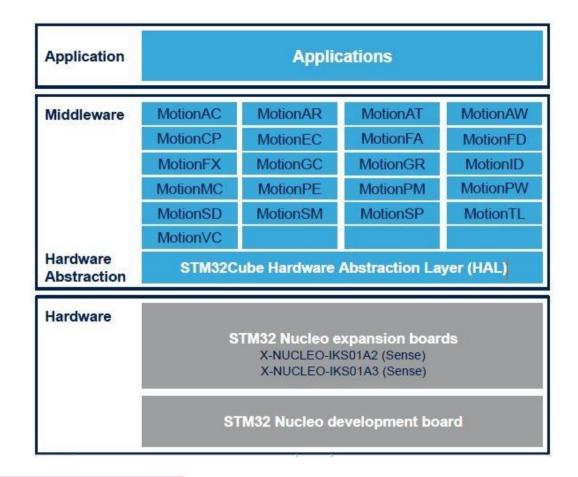
≵ վ∏ս \ 23% ₤ 01:37

ST BLE Sensor © 2019 STMicroelectronics



Sensor data reception over BLE Data plot and log, publish to cloud

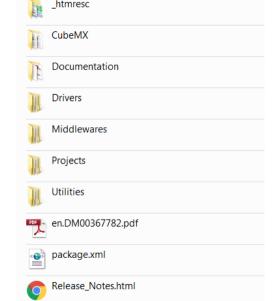
Application for SensorTile.box creation & upload


Support multiple platforms and STM32Cube Function Packs through **BlueST-SDK** protocol

X-CUBE-MEMS1 Firmware Package

- Low level drivers + Example projects
- Middleware
 - Libraries and demo applications dedicated to utilization of sensor data – see next slide
 - Free, user-friendly license terms
- Supported HW tools
 - MEMS expansion: X-NUCLEO-IKS01A2 / A3
 - Industrial MEMS expansion: X-NUCLEO-IKS02A1
 - STM32 Nucleo boards: NUCLEO-F401 or NUCLEO-L073 or NUCLEO-L152 or NUCLEO-L476
- Development Toolchains and Compilers
 - IAR Embedded Workbench for ARM (EWARM)
 - Keil RealView MDK-ARM
 - System Workbench for STM32

Available for download at X-CUBE-MEMS1


The right SW for your Sensor 20

Example projects 21

- Standard examples fundamental utilization of sensors and their features
 - DataLog examples
 - allow to display user data in the Unicleo-GUI or serial terminal
 - sensor configuration
 - support of sensors in DIL24 socket
 - FIFO modes examples, Self-test utilization examples, interrupt event examples
 - LSM6DSO embedded features examples
 - detection of 6D orientation, free fall, single tap, tilt, wake up
 - how to handle multiple HW events
 - advanced features; pedometer, self-test
- Middleware application examples utilization of SW libraries
 - With each SW library there is associated application
 - e.g. MotionSP library is demonstrated in Vibration Monitoring application
 - Application reads sensor data, calls the SW library and acquires output values
 - Results are sent to Unicleo-GUI over USB port

Delivered in C source code + project files (IAR, Keil, System Workbench)

I M D T L Y

Conditions to use ST SW libraries

(binary provided)

STM32 is used:Simplified prod

- Simplified process for SW library usage
- No paperwork
- License provided by server
- (if Software License Agreement accepted)

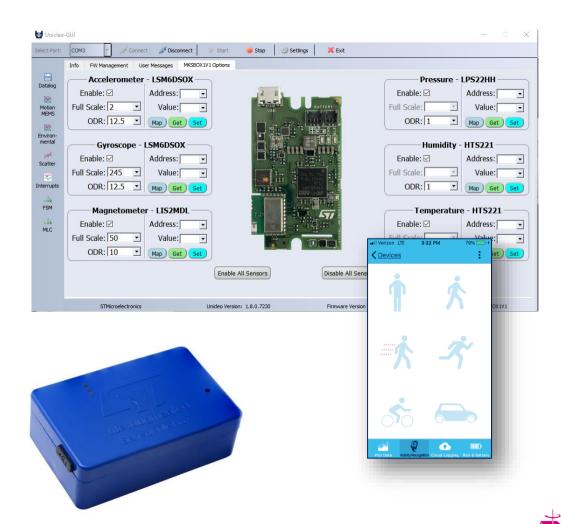
No STM32 used:

- Request to sent to ST (me)
- LUA* preparation
- LUA* signature from customer
- SW reception

Free of Charge!

Valid for:

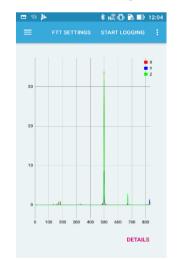
X-CUBE-BLE1, X-CUBE-MEMS1, X-CUBE-MEMSMIC1, X-CUBE-SUBG1, FP-SNS-MOTENV1, FP-SNS-ALLMEMS1, FP-SNS-FLIGHT1, FP-AUD-BVLINK1, FP-SNS-SMARTMIC1


FP-SNS-STBOX1

SW function pack for SensorTile.box

- Applications
 - DataLog save to SD card at max speed w/RTOS
 - BLESensors stream to ST BLE Sensor app
 - BLELowPower stream to ST BLE Sensor app w/RTOS
 - BLEMLC Machine Learning Core demo (DecTree by Unico GUI) – activity recognition or vibration monitoring
 - BLEFOTA Firmware Over-The-Air-Update
- Examples
 - **Bootloader** at 0x0800 000 with BLEFOTA at 0x0800 4000
 - DataLogExtended stream to Unicleo GUI via USB Virtual COM port

Available for download at FP-SNS-STBOX1


FP-IND-PREDMNT1

SW function pack for predictive maintenance

- Advanced time and frequency domain signal processing for predictive maintenance
- Audio algorithms for acoustic emission (AE) monitoring
- Mobile device connection via **BLE** and use a suitable Android™ or iOS™ application, the ST BLE Sensor app.

Available for download at FP-IND-PREDMNT1

Connection to cloud (ST Dashboard) via Wifi

ST BLE Sensor: FFT Amplitude

ST BLE Sensor: FFT Settings

12: Acc Peak (m/s^2): 19 54 Acc Peak (m/s^2): 5.39 requency (Hz): 498.70 Frequency (Hz): 498.70 May amplitude (m/s^2): 4 ft Frequency (Hz): 498.70

\$ N2 (T) ₽ III 12:0

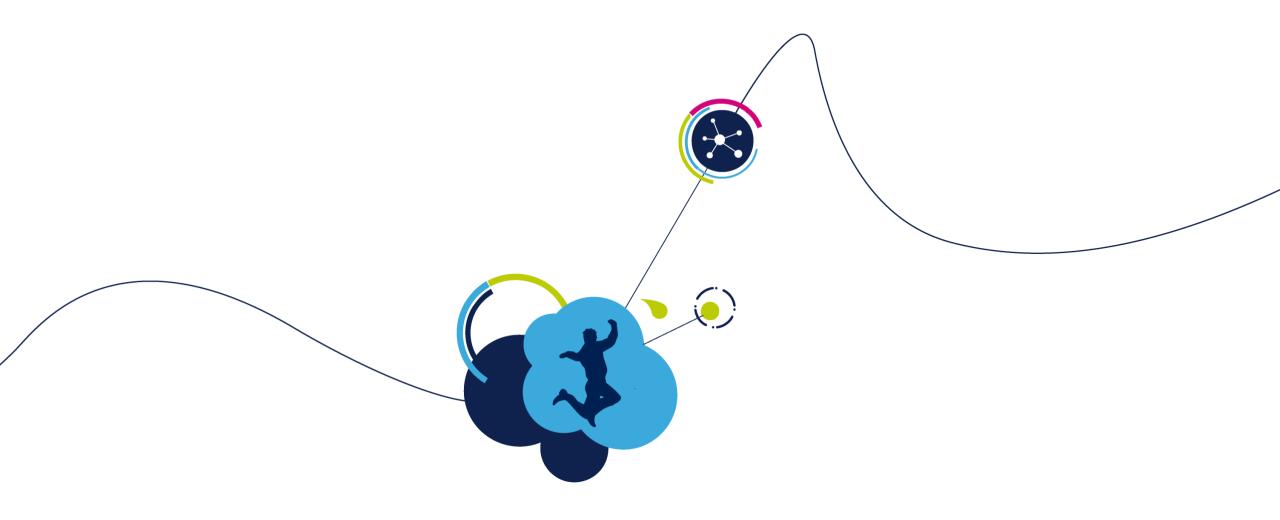
PMS Speed (mm/e): 3.13

ST BLE Sensor: Predictive Maintenance

Low level drivers & Examples 25

- Standard C platform-independent drivers
- Linux Device Drivers (LDD)
 - Input framework
 - IIO framework
- Android Hardware Abstraction Layer (HAL)
- Database of example configurations for
 - Machine Learning Core
 - Finite State Machine

st.com or github.com/STMicroelectronics



Product documentation		
Product features	Datasheet, application note(s)	See corresponding product page on st.com
Technical notes		
PCB layout and soldering guidelines	LGA packages	<u>TN0018</u>
	QFN packages	TN0019
	HLGA packages	<u>TN1198</u>
Design tips		
Embedded features of ST accelerometer's	6D orientation	<u>DT0097</u>
	Free-fall recognition	<u>DT0100</u>
	Single-tap and Double-tap recognition	<u>DT0101</u>
	Wake-up recognition	<u>DT0098</u>
	Single data conversion mode	<u>DT0102</u>
	Benefits of using FIFO	<u>DT0011</u>
Sensor calibration	1-point or 3-point tumble sensor calibration	<u>DT0105</u>
	6-point tumble sensor calibration	<u>DT0053</u>
	Ellipsoid or sphere fitting for sensor calibration	<u>DT0059</u>
Magnetometer calibration and compass	Computing tilt measurement and tilt-compensated e-compass	DT0058
	Compensating for magnetometer installation error and hard-iron effects using accelerometer-assisted 2D calibration	DT0103
	Digital magnetometer and e-Compass: efficient design tips	DT0131
	Noise analysis and identification in MEMS sensors, Allan, Time, Hadamard, Overlapping, Modified, Total variance	DT0064
	Exploiting the magnetometer as a virtual gyroscope at low and ultra-high spin rates	DT0104
	Residual linear acceleration by gravity subtraction to enable dead-reckoning	<u>DT0106</u>
White paper	Capacitive MEMS accelerometer for Condition Monitoring	link

Resources 26

www.st.com/sensors

Thank You!

